Origin of reversed vortex ratchet motion.
نویسندگان
چکیده
We experimentally demonstrate that the origin of multiply reversed rectified vortex motion in an asymmetric pinning landscape not only is a consequence of the vortex-vortex interactions but also essentially depends on the ratio between the characteristic interaction distance and the period of the asymmetric pinning potential. We study four samples with different periods d of the asymmetric potential. For large d the dc voltage V(dc) recorded under a ac excitation indicates that the average vortex drift is from bigger to smaller dots for all explored positive fields. As d is reduced, a series of sign reversals in the dc response are observed as a function of field. We show that the number of sign reversals increases as d decreases. These findings are in agreement with recent computer simulations and illustrate the relevance of the different characteristic lengths for the vortex rectification effects.
منابع مشابه
Vortex motion rectification in Josephson junction arrays with a ratchet potential.
By means of electrical transport measurements we have studied the rectified motion of vortices in ratchet potentials engineered on overdamped Josephson junction arrays. The rectified voltage as a function of the vortex density shows a maximum efficiency close a matching condition to the period of the ratchet potential indicating a collective vortex motion. Vortex current reversals were detected...
متن کاملVortex ratchet reversal at fractional matching fields in kagomélike array with symmetric pinning centers
Arrays of Ni nanodots embedded in Nb superconducting films have been fabricated by sputtering and electron-beam lithography techniques. The arrays are periodic triangular lattices of circular Ni dots arranged in a kagomélike pattern with broken reflection symmetry. Relevant behaviors are found in the vortex lattice dynamics: i at values lower than the first integer matching field, several fract...
متن کاملVortex core deformation and stepper-motor ratchet behavior in a superconducting aluminum film containing an array of holes.
We investigated experimentally the frequency dependence of a superconducting vortex ratchet effect by means of electrical transport measurements and modeled it theoretically using the time-dependent Ginzburg-Landau formalism. We demonstrate that the high frequency vortex behavior can be described as a discrete motion of a particle in a periodic potential, i.e., the so-called stepper-motor behav...
متن کاملExperimentally realizable devices for controlling the motion of magnetic flux quanta in anisotropic superconductors.
A new generation of microscopic ratchet systems is currently being developed for controlling the motion of electrons and fluxons, as well as for particle separation and electrophoresis. Virtually all of these use static spatially asymmetric potential energies to control transport properties. Here we propose completely new types of ratchet-like systems that do not require fixed spatially asymmet...
متن کاملA superconducting reversible rectifier that controls the motion of magnetic flux quanta.
We fabricated a device that controls the motion of flux quanta in a niobium superconducting film grown on an array of nanoscale triangular pinning potentials. The controllable rectification of the vortex motion is due to the asymmetry of the fabricated magnetic pinning centers. The reversal in the direction of the vortex flow is explained by the interaction between the vortices trapped on the m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 99 24 شماره
صفحات -
تاریخ انتشار 2007